14. 浮点数算法:争议和限制

浮点数在计算机中表达为二进制(binary)小数。例如:十进制小数:

0.125

是 1/10 + 2/100 + 5/1000 的值,同样二进制小数:

0.001

是 0/2 + 0/4 + 1/8。这两个数值相同。唯一的实质区别是第一个写为十进制小数记法,第二个是二进制。

遗憾的是,大多数十进制小数不能精确的表达二进制小数。

这个问题更早的时候首先在十进制中发现。考虑小数形式的 1/3 ,你可以来个十进制的近似值。

0.3

或者更进一步的,

0.33

或者更进一步的,

0.333

诸如此类。如果你写多少位,这个结果永远不是精确的 1/3 ,但是可以无限接近 1/3 。

同样,无论在二进制中写多少位,十进制数 0.1 都不能精确表达为二进制小数。二进制来表达 1/10 是一个无限循环小数:

0.0001100110011001100110011001100110011001100110011...

在任意无限位数值中中止,你可以得到一个近似。

在一个典型的机器上运行 Python,一共有53位的精度来表示一个浮点数,所以当你输入十进制的 0.1 的时候,看到是一个二进制的小数:

0.00011001100110011001100110011001100110011001100110011010

非常接近,但是不完全等于,1/10。

这是很容易忘记,存储的值是一个近似的原小数,由于浮体的方式,显示在提示符的解释。Python 中只打印一个小数近似的真实机器所存储的二进制近似的十进制值。如果 Python 要打印存储的二进制近似真实的十进制值 0.1,那就要显示:

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

这么多位的数字对大多数人是没有用的,所以 Python 显示一个舍入的值

>>> 1 / 10
0.1

只要记住即使打印的结果看上去是精确的 1/10,真正存储的值是最近似的二进制小数。

有趣地是,存在许多不同的十进制数共享着相同的近似二进制小数。例如,数字 0.10.10000000000000001 以及 0.1000000000000000055511151231257827021181583404541015625 都是 3602879701896397 / 2 ** 55 的近似值。因为所有这些十进制数共享相同的近似值,在保持恒等式 eval(repr(x)) == x 的同时,显示的可能是它们中的任何一个。

历史上,Python 提示符和内置的 repr() 函数选择一个 17 位精度的数字,0.10000000000000001。从 Python 3.1 开始,Python(在大多数系统上)能够从这些数字当中选择最短的一个并简单地显示 0.1

注意,这是二进制浮点数的自然性质:它不是 Python 中的一个 bug,也不是你的代码中的 bug。你会看到所有支持硬件浮点数算法的语言都会有这个现象(尽管有些语言默认情况下或者在所有输出模式下可能不会 显示 出差异)。

为了输出更好看,你可能想用字符串格式化来生成固定位数的有效数字:

>>> format(math.pi, '.12g')  # give 12 significant digits
'3.14159265359'

>>> format(math.pi, '.2f')   # give 2 digits after the point
'3.14'

>>> repr(math.pi)
'3.141592653589793'

认识到这,在真正意义上,是一种错觉是很重要的:你在简单地舍入真实机器值的 显示

例如,既然 0.1 不是精确的 1/10,3 个 0.1 的值相加可能也不会得到精确的 0.3:

>>> .1 + .1 + .1 == .3
False

另外,既然 0.1 不能更接近 1/10 的精确值而且 0.3 不能更接近 3/10 的精确值,使用 round() 函数提前舍入也没有帮助:

>>> round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1)
False

虽然这些数字不可能再更接近它们想要的精确值,round() 函数可以用于在计算之后进行舍入,这样的话不精确的结果就可以和另外一个相比较了:

>>> round(.1 + .1 + .1, 10) == round(.3, 10)
True

二进制浮点数计算有很多这样意想不到的结果。“0.1”的问题在下面”误差的表示”一节中有准确详细的解释。更完整的常见怪异现象请参见 浮点数的危险

最后我要说,“没有简单的答案”。也不要过分小心浮点数!Python 浮点数计算中的误差源之于浮点数硬件,大多数机器上每次计算误差不超过 2**53 分之一。对于大多数任务这已经足够了,但是你要在心中记住这不是十进制算法,每个浮点数计算可能会带来一个新的舍入错误。

虽然确实有问题存在,对于大多数平常的浮点数运算,你只要简单地将最终显示的结果舍入到你期望的十进制位数,你就会得到你期望的最终结果。str() 通常已经足够用了,对于更好的控制可以参阅 格式化字符串语法str.format() 方法的格式说明符。

对于需要精确十进制表示的情况,可以尝试使用 decimal 模块,它实现的十进制运算适合会计方面的应用和高精度要求的应用。

fractions 模块支持另外一种形式的运算,它实现的运算基于有理数(因此像1/3这样的数字可以精确地表示)。

如果你是浮点数操作的重度使用者,你应该看一下由 SciPy 项目提供的 Numerical Python 包和其它用于数学和统计学的包。参看 <http://scipy.org>。

当你真的 想要知道浮点数精确值的时候,Python 提供这样的工具可以帮助你。float.as_integer_ratio() 方法以分数的形式表示一个浮点数的值:

>>> x = 3.14159
>>> x.as_integer_ratio()
(3537115888337719, 1125899906842624)

因为比值是精确的,它可以用来无损地重新生成初始值:

>>> x == 3537115888337719 / 1125899906842624
True

float.hex() 方法以十六进制表示浮点数,给出的同样是计算机存储的精确值:

>>> x.hex()
'0x1.921f9f01b866ep+1'

精确的十六进制表示可以用来准确地重新构建浮点数:

>>> x == float.fromhex('0x1.921f9f01b866ep+1')
True

因为可以精确表示,所以可以用在不同版本的 Python(与平台相关)之间可靠地移植数据以及与支持同样格式的其它语言(例如 Java 和 C99)交换数据。

另外一个有用的工具是 math.fsum() 函数,它帮助求和过程中减少精度的损失。当数值在不停地相加的时候,它会跟踪“丢弃的数字”。这可以给总体的准确度带来不同,以至于错误不会累积到影响最终结果的点:

>>> sum([0.1] * 10) == 1.0
False
>>> math.fsum([0.1] * 10) == 1.0
True

14.1. 表达错误

这一节详细说明 “0.1” 示例,教你怎样自己去精确的分析此类案例。假设这里你已经对浮点数表示有基本的了解。

Representation error 提及事实上有些(实际是大多数)十进制小数不能精确的表示为二进制小数。这是 Python (或 Perl,C,C++,Java,Fortran 以及其它很多)语言往往不能按你期待的样子显示十进制数值的根本原因:

>>> 0.1 + 0.2
0.30000000000000004

这是为什么? 1/10 不能精确的表示为二进制小数。大多数今天的机器(2000年十一月)使用 IEEE-754 浮点数算法,大多数平台上 Python 将浮点数映射为 IEEE-754 “双精度浮点数”。754 双精度包含 53 位精度,所以计算机努力将输入的 0.1 转为 J/2**N 最接近的二进制小数。J 是一个 53 位的整数。改写:

1 / 10 ~= J / (2**N)

为:

J ~= 2**N / 10

J 重现时正是 53 位(是 >= 2**52 而非 < 2**53 ), N 的最佳值是 56:

>>> 2**52
4503599627370496
>>> 2**53
9007199254740992
>>> 2**56/10
7205759403792793

因此,56 是保持 J 精度的唯一 N 值。J 最好的近似值是整除的商:

>>> q, r = divmod(2**56, 10)
>>> r
6

因为余数大于 10 的一半,最好的近似是取上界:

>>> q+1
7205759403792794

因此在 754 双精度中 1/10 最好的近似值是是 2**56,或:

7205759403792794 / 72057594037927936

要注意因为我们向上舍入,它其实比 1/10 稍大一点点。如果我们没有向上舍入,它会比 1/10 稍小一点。但是没办法让它 恰好 是 1/10!

所以计算机永远也不 “知道” 1/10:它遇到上面这个小数,给出它所能得到的最佳的 754 双精度实数:

>>> .1 * 2**55
7205759403792794.0

如果我们把这小数乘以 10**55,我们可以看到其55位十进制数的值:

>>> 3602879701896397 * 10 ** 55 // 2 ** 55
1000000000000000055511151231257827021181583404541015625

这表示存储在计算机中的实际值近似等于十进制值 0.1000000000000000055511151231257827021181583404541015625。许多语言(包括旧版本的Python)会把结果舍入到17位有效数字,而不是显示全部的十进制值:

>>> format(0.1, '.17f')
'0.10000000000000001'

fractionsdecimal 模块使得这些计算很简单:

>>> from decimal import Decimal
>>> from fractions import Fraction

>>> Fraction.from_float(0.1)
Fraction(3602879701896397, 36028797018963968)

>>> (0.1).as_integer_ratio()
(3602879701896397, 36028797018963968)

>>> Decimal.from_float(0.1)
Decimal('0.1000000000000000055511151231257827021181583404541015625')

>>> format(Decimal.from_float(0.1), '.17')
'0.10000000000000001'