离线下载
PDF版 ePub版

大CC · 更新于 2018-11-28 11:00:43

性能优化

性能优化的核心是找出系统的瓶颈点,问题找到了,优化的工作也就完成了大半; 这里介绍的性能优化主要从两个层面来介绍:系统层面和程序层面;

分析系统瓶颈

系统响应变慢,首先得定位大致的问题出在哪里,是IO瓶颈、CPU瓶颈、内存瓶颈还是程序导致的系统问题;

使用top工具能够比较全面的查看我们关注的点::

$top
top - 09:14:56 up 264 days, 20:56,  1 user,  load average: 0.02, 0.04, 0.00
Tasks:  87 total,   1 running,  86 sleeping,   0 stopped,   0 zombie
Cpu(s):  0.0%us,  0.2%sy,  0.0%ni, 99.7%id,  0.0%wa,  0.0%hi,  0.0%si,  0.2%st
Mem:    377672k total,   322332k used,    55340k free,    32592k buffers
Swap:   397308k total,    67192k used,   330116k free,    71900k cached
PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND
1 root      20   0  2856  656  388 S  0.0  0.2   0:49.40 init
2 root      20   0     0    0    0 S  0.0  0.0   0:00.00 kthreadd
3 root      20   0     0    0    0 S  0.0  0.0   7:15.20 ksoftirqd/0
4 root      RT   0     0    0    0 S  0.0  0.0   0:00.00 migration/

进入交互模式后:

  • 输入M,进程列表按内存使用大小降序排序,便于我们观察最大内存使用者使用有问题(检测内存泄漏问题);
  • 输入P,进程列表按CPU使用大小降序排序,便于我们观察最耗CPU资源的使用者是否有问题;

top第三行显示当前系统的,其中有两个值很关键:

  • %id:空闲CPU时间百分比,如果这个值过低,表明系统CPU存在瓶颈;
  • %wa:等待I/O的CPU时间百分比,如果这个值过高,表明IO存在瓶颈;

分析内存瓶颈

查看内存是否存在瓶颈,使用top指令看比较麻烦,而free命令更为直观::

[/home/weber#]free
             total       used       free     shared    buffers     cached
Mem:        501820     452028      49792      37064       5056     136732
-/+ buffers/cache:     310240     191580
Swap:            0          0          0
[/home/weber#]top
top - 17:52:17 up 42 days,  7:10,  1 user,  load average: 0.02, 0.02, 0.05
Tasks:  80 total,   1 running,  79 sleeping,   0 stopped,   0 zombie
%Cpu(s):  0.0 us,  0.0 sy,  0.0 ni,100.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem:    501820 total,   452548 used,    49272 free,     5144 buffers
KiB Swap:        0 total,        0 used,        0 free.   136988 cached Mem

top工具显示了free工具的第一行所有信息,但真实可用的内存,还需要自己计算才知道; 系统实际可用的内存为free工具输出第二行的free+buffer+cached;也就是第三行的free值191580;关于free命令各个值的详情解读,请参考这篇文章 :ref:free ;

如果是因为缺少内存,系统响应变慢很明显,因为这使得系统不停的做换入换出的工作;

进一步的监视内存使用情况,可使用vmstat工具,实时动态监视操作系统的内存和虚拟内存的动态变化。 参考: :ref:vmstat ;

分析IO瓶颈

如果IO存在性能瓶颈,top工具中的%wa会偏高;

进一步分析使用iostat工具::

/root$iostat -d -x -k 1 1
Linux 2.6.32-279.el6.x86_64 (colin)   07/16/2014      _x86_64_        (4 CPU)

Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s avgrq-sz avgqu-sz   await  svctm  %util
sda               0.02     7.25    0.04    1.90     0.74    35.47    37.15     0.04   19.13   5.58   1.09
dm-0              0.00     0.00    0.04    3.05     0.28    12.18     8.07     0.65  209.01   1.11   0.34
dm-1              0.00     0.00    0.02    5.82     0.46    23.26     8.13     0.43   74.33   1.30   0.76
dm-2              0.00     0.00    0.00    0.01     0.00     0.02     8.00     0.00    5.41   3.28   0.00
  • 如果%iowait的值过高,表示硬盘存在I/O瓶颈。
  • 如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。
  • 如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;
  • 如果 await 远大于 svctm,说明I/O 队列太长,io响应太慢,则需要进行必要优化。
  • 如果avgqu-sz比较大,也表示有大量io在等待。

更多参数说明请参考 :ref:iostat ;

分析进程调用

通过top等工具发现系统性能问题是由某个进程导致的之后,接下来我们就需要分析这个进程;继续 查询问题在哪;

这里我们有两个好用的工具: pstack和pstrace

pstack用来跟踪进程栈,这个命令在排查进程问题时非常有用,比如我们发现一个服务一直处于work状态(如假死状态,好似死循环),使用这个命令就能轻松定位问题所在;可以在一段时间内,多执行几次pstack,若发现代码栈总是停在同一个位置,那个位置就需要重点关注,很可能就是出问题的地方;

示例:查看bash程序进程栈::

/opt/app/tdev1$ps -fe| grep bash
tdev1   7013  7012  0 19:42 pts/1    00:00:00 -bash
tdev1  11402 11401  0 20:31 pts/2    00:00:00 -bash
tdev1  11474 11402  0 20:32 pts/2    00:00:00 grep bash
/opt/app/tdev1$pstack 7013
#0  0x00000039958c5620 in __read_nocancel () from /lib64/libc.so.6
#1  0x000000000047dafe in rl_getc ()
#2  0x000000000047def6 in rl_read_key ()
#3  0x000000000046d0f5 in readline_internal_char ()
#4  0x000000000046d4e5 in readline ()
#5  0x00000000004213cf in ?? ()
#6  0x000000000041d685 in ?? ()
#7  0x000000000041e89e in ?? ()
#8  0x00000000004218dc in yyparse ()
#9  0x000000000041b507 in parse_command ()
#10 0x000000000041b5c6 in read_command ()
#11 0x000000000041b74e in reader_loop ()
#12 0x000000000041b2aa in main ()

而strace用来跟踪进程中的系统调用;这个工具能够动态的跟踪进程执行时的系统调用和所接收的信号。是一个非常有效的检测、指导和调试工具。系统管理员可以通过该命令容易地解决程序问题。

参考: ref:strace

优化程序代码

优化自己开发的程序,建议采用以下准则::

  1. 二八法则:在任何一组东西中,最重要的只占其中一小部分,约20%,其余80%的尽管是多数,却是次要的;在优化实践中,我们将精力集中在优化那20%最耗时的代码上,整体性能将有显著的提升;这个很好理解。函数A虽然代码量大,但在一次正常执行流程中,只调用了一次。而另一个函数B代码量比A小很多,但被调用了1000次。显然,我们更应关注B的优化。
  2. 编完代码,再优化;编码的时候总是考虑最佳性能未必总是好的;在强调最佳性能的编码方式的同时,可能就损失了代码的可读性和开发效率;

gprof使用步骤

  1. 用gcc、g++、xlC编译程序时,使用-pg参数,如:g++ -pg -o test.exe test.cpp编译器会自动在目标代码中插入用于性能测试的代码片断,这些代码在程序运行时采集并记录函数的调用关系和调用次数,并记录函数自身执行时间和被调用函数的执行时间。
  2. 执行编译后的可执行程序,如:./test.exe。该步骤运行程序的时间会稍慢于正常编译的可执行程序的运行时间。程序运行结束后,会在程序所在路径下生成一个缺省文件名为gmon.out的文件,这个文件就是记录程序运行的性能、调用关系、调用次数等信息的数据文件。
  3. 使用gprof命令来分析记录程序运行信息的gmon.out文件,如:gprof test.exe gmon.out则可以在显示器上看到函数调用相关的统计、分析信息。上述信息也可以采用gprof test.exe gmon.out> gprofresult.txt重定向到文本文件以便于后续分析。

关于gprof的使用案例,请参考 f1;

其它工具

调试内存泄漏的工具valgrind,感兴趣的朋友可以google了解;

OProfile: Linux 平台上的一个功能强大的性能分析工具,使用参考 f2;

除了上面介绍的工具,还有一些比较全面的性能分析工具,比如sar(Linux系统上默认不安装,需要手动安装下); 将sar的常驻监控工具打开后,能够收集比较全面的性能分析数据;

关于sar的使用,参考 :ref:sar ;

上一篇: 程序调试 下一篇: gdb 调试利器